
Copy 4 '3 of 83 copies

AD-A264 918

IDA PAPER P-2765

ANALYSIS AND GUIDELINES FOR
REUSABLE ADA SOFTWARE

David A. Wheeler

Dennis W. Fife. Task Leader

DT1C
ELECTE

SIMY 2 5 19900

August 1992

Approved for public release, unlimited distribution: 19 October 1902.

Preparedfor
Strategic Defense Initiative Organization (SDIO)

0 93'717628

3 4 INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, N lv-yndria, Virginia 22311-1772

IDA Log No. HO 92-042441

DEFINITIONS
IDA publishes the 1ollowing documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (bh address issues of signilicant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior Individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the prolect ind othus as selected by IDA to ensure their high quality and
relevance to the probtfms studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefulty considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results at
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use. •

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense. nor should the contents be construed as
reflecting the official position of that Agency.

"" 1903 Institute for Defense Analyses J
The Government of the United States is granted an unlimited license to reproduce this
document. i0

H., i i INH0

1 Forrm Approved

REPORT DOCUMENTATION PAGE oM1 No. 0704-0189

Public r burden for this collection of informatitot is ettimated to average 1 hour p respons•e. including thc time for reviewing ninjucuon, acarnchig cxssung data suor~ct.
Pgathlrig and maitaining the data needed, and completing and reviewing the collection of information. Send comments regarding ttus burden estmm Ste or any Omher aspect 0.1 t..
collection of information, inaluding faggton$ otreducingt t burdesn. to Wahitngtot HeadquartersServices, Dirunau for Inlform& tion Openraions and Rrpos . 1215 e•retmor
Davis Highway. Suite 1204. Arlington, A 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Proyect (0704-0 188), Washiston , DC 20503

1. AGENCY USE ONLY (Leavc blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERE'D

August 1992 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Analysis and Guidelines for Reusable Ada Software MDA 903 89 C 0003

T-R2-597.2

6. AUTHOR(S)

David A. Wheeler

7, PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION REPORT

NUMBER

Institute for Defense Analyses (IDA) IDA Paper P-2765
1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. •PONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

SDIO/GMI REPORT NUMBER

The Pentagon, Room IE149
Washington, DC 20301-7100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIL1TY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution: 19 October 1992 2A

13. ABSTRACT (Maxirmnu 2W0 words)

SDIO is developing the Global Protection Against Limited Strikes (GPALS) system. Much of the software is
to be developed in Ada, and reuse will be considered in the software design and implementation phases. This
document provides an analysis and candidate guidelines for developing reusable Ada software to supplement
existing SDIO guidelines. The guidelines in this document are based on previous IDA work, IDA Paper P-
2378, An Approach for Constructing Reusable Components in Ada by Stephen Edwards. In addition, two
other sources were examined: GPALS Software Standards by GE Aerospace, and Ada Quality and Style:
Guidelines for Professional Programmers by the Software Productivity Consortium. The analysis shows that
many of Edwards's guidelines are already included in Ada Quality and Style and thus will already be used by
SDIO. Some of the guidelines require further research before inclusion in a candidate set of guidelines. The
remaining guidelines are presented as candidate guidelines in a form similar to that of Ada Quality and Style.
This document presents the candidate guidelines in a form which could be readily added to existing Ada
development guidelines.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Ada; Software Reuse; Guidelines; 3C Model; Global Protection Against Umited 61
Strikes (GPALS) 16. PRICE CODE

17. SECURITY CLASSIFICATION I8.SECURITYCLASSIFICATI0,ON 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Preacribed by ANSI Sud. Z39. 18

298-102

IDA PAPER P-2765

ANALYSIS AND GUIDELINES FOR
REUSABLE ADA SOFTWARE

David A. Wheeler

Dennis W. Fife. Task Leader

August 1992

Approved for public release, unlimited distribution: 19 October 1992.

I DA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-R2-597.2

PREFACE

The Institute for Defense Analyses (IDA) was tasked by the Strategic
Defense Initiative Organization (SDIO) to "provide a candidate Global Protec-
tion Against Limited Strikes (GPALS) standard for maintainable and reusable
software based on the 3C model." This work was done under Contract MDA 903
89 C 0003, Task Order 597.2, Amendment 4, SDIO Software Technology Plan.
This document provides an analysis and a set of candidate guidelines for develop-
ing reusable Ada software to supplement existing guidelines already required by
SDIO.

The guidelines are based on previous IDA work and extend the GE
Aerospace's GPALS Software Standards and Ada Quality and Style: Guidelines
for Professional Programmers, written by the Software Productivity Consortium.
The guidelines in this document are written in a form to be readily added to exist-
ing Ada development guidelines.

The document is directed towards the developers of reusable Ada soft-
ware, in particular those who are developing GPALS software.

This document was reviewed by the following members of IDA: Dr.
Richard J. Ivanetich, Mr. Robert J. Knapper, Dr. Reginald N. Meeson, Mr. Clyde
G. Roby, and Mr. Jonathan D. Wood. Their contributions are gratefully acknowl-
edged.

p5

it

~.i..!

EXECUTIVE SUMMARY

The Strategic Defense Initiative Organization (SDIO) is developing the
Global Protection Against Limited Strikes (GPALS) system. Much of this soft-
ware is to be developed in Ada, and the software design and implementation
phases will be considering reuse. SDIO has already chosen some guidelines for
developing reusable components to assist in this effort, but no one had considered
merging other guidelines from a separate SDIO-sponsored effort into this selected
set of guidelines.

This document provides an analysis and candidate guidelines for develop-
ing reusable Ada software to supplement those already required by SDIO. Thcse
guidelines are based on previous IDA work by Edwards [1990], which in turn is
based on the 3C model as documented by Tracz [1989]. The 3C model was devel-
oped at the Reuse In Practice Workshop in 1989. The name of the 3C model
comes from the names of the three ideas on which it is based: concept, content,
and context. To creatt; a reusable component using the 3C model, a designer sepa-
rates what the component will do (the concept), how it will do it (the content), and
what external information is necessary to tailor the component for use (the con-
text).

Two other documents form the basis for this document. The first is the
Software Productivity Consortium (SPC)'s Ada Quality and Style: Guidelines for
Professional Programmers which includes a number of guidelines for developing
reusable Ada components. The second is General Electric Aerospace's GPALS
Software Standards, which defines the GPALS software development guidelines
and includes by reference SPC's document.

The analysis shows that many of Edwards' guidelines are already included
in Ada Quality and Style and thus will already be used by SDIO. Some of the
guidelines require further research before inclusion in a candidate set of guide-
lines. The remaining guidelines are presented as candidate guidelines in a form
similar to that of Ada Quality and Style.

vii

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1 PURPOSE 1
1.2 SCOPE 1
1.3 BACKGROUND 1
1.4 DOCUMENT ORGANIZATION 3

2. APPROACH 5

3. GUIDELINES OVERLAPPING EXISTING GUIDE-
LINES 7

4. GUIDELINES REQUIRING FURTHER STUDY 11
4.1 SWAPPING 11
4.2 SAVE AND RESTORE 13
4.3 INITIALIZE OPERATION 14
4.4 COMMON SOURCE 14
4.5 PROCEDURE VARIABLE ENCAPSULATION 16

5. CANDIDATE GUIDELINES. 19
5.1 MODELS 20
5.2 MINIMUM PROFILE 23
5.3 FINALIZE 25
5.4 SELF-COMPOSING COMPONENT 27
5.5 ARBITRARY ITERATIONS 28

APPENDIX A- GUIDELINE ALLOCATION 29

APPENDIX B - PROCEDURE VARIABLE EXAMPLE 31

1. PROCEDURE VARIABLE SPECIFICATION 31

2. PROCEDURE VARIABLE IMPLEMENTATION USING TASK-
ING . 33

3. PROCEDURE VARIABLE IMPLEMENTATION USING INTER-
LANGUAGE CALL 37

REFERENCES 40

ACRONYMS 43

LIST OF TABLES

TABLE 1. Guidelines Overlapping Existing Guidelines. 8

*TABLE 2. Guidelines Requiring Further Study 11

TABLE 3. Summary of Candidate Guidelines. 19

TABLE 4. Allocation of Edwards' Guidelines. 30

Xi

1. INTRODUCTION

1.1 PURPOSE

This document provides an analysis and set of candidate guidelines for
developing reusable Ada software. This analysis and set of candidate guidelines
are based on previous IDA work by Edwards [1990], which in turn is based on the
3C model as developed at the Reuse In Practice Workshop in 1989 and docu-
mented by Tracz [1989]. These candidate guidelines are intended to supplement
either Ada Quality and Style: Guidelines for Professional Programmers by the
Software Productivity Consortium (SPC) [1991] or the GPALS Software Stan-
dards by General Electric Aerospace (GE). These candidate guidelines are
intended for developers of reusable Ada software for the Global Protection
Against Limited Strikes (GPALS) system, as well as developers of reusable Ada
software for other projects.

1.2 SCOPE

The analyzed guidelines are extracted from Institute for Defense Analyses
(IDA) Paper P-2378, An Approach for Constructing Reusable Components in
Ada [Edwards 1990]. Guidelines which were found to overlap Ada Quality and
Style, overlap each other, or appeared to require further study, have been
separated from the rest of the guidelines. The remaining guidelines are presented
as a candidate set of guidelines and are presented in a form that is easier than the
previous IDA paper for software developers to use.

These guidelines concentrate on reusable code as a product, not on the
process of developing reusable code.

The developer must determine which guidelines may be inappropriate for
a specific application. The rationale for each guideline has been included in this
document to help developers determine the best trade-off between the aim of each
guideline and the user's needs. The text of the candidate guidelines include their
rationale and the qualitative impact of following or not following them, but no
cost/benefit study has been performed for this candidate set of guidelines.

1.3 BACKGROUND

Three documents serve as the basis of this document:

1. For the rest of this paper this title is shortened to Ada Quality and Style.

1

"* Ada Quality and Style: Guidelines for Professional Programmers by the

Software Productivity Consortium (SPC) [1991].

"* GPALS Software Standards by General Electric Aerospace (GE) [1991].

"* An Approach for Constructing Reusable Components in Ada by Stephen
Edwards [1990].

Ada Quality and Style defines a set of Ada coding guidelines, including a
number of guidelines for developing reusable components. The Ada Joint Pro- 0
gram Office (AJPO) suggests this Ada style guide for use in Department of
Defense programs (as announced in [AdaIC 1991a] and [AdaIC 1991b]).

The GPALS Software Standards document defines the required guidelines
for developing software for the GPALS system [SDIO 1992]. It includes by refer- 0
ence Ada Quality and Style. As of this writing the GPALS Software Standards ref-
erences a previous version of the Ada Quality and Style (1989) instead of the more
recent version (1991). The more recent version of Ada Quality and Style (1991)
will be used in this document. It is expected that an upcoming version of the
GPALS Software Standards will reference the newer version of Ada Quality and
Style. 2 0

Edwards [1990] recommends a set of guidelines for developing reusable
Ada components based on a model termed the 3C model. These guidelines are for
detailed design and code, and concentrate on reusable Ada code as a product
instead of the process for developing this code. Edwards identifies 21 specific 6
guidelines, implies 2 others, and 2 guidelines can be split into 2 more guidelines
each, making a total of 25 guidelines.

The 3C model was developed at the Reuse In Practice Workshop in 1989
and was first described in a working group's report by Tracz [1989]. This work-
shop was sponsored by IDA, SEI, SDIO, and the ACM and is described further 0
by Baldo [1990]. The name of the 3C model comes from the names of the three
ideas on which it i, based: concept, content, and context. To create a reusable
component using the 3C model, separate what the component will do (the con-
cept), how it will do it (the content), and what external information is necessary to
tailor the component for use (the context). Detailed discussion of the 3C model is 0
presented in section 5.1 of this document.

Many of Edwards' guidelines are included in Ada Quality and Style and
thus will already be used by SDIO. Some of Edwards' guidelines require signifi-
cant further study before insertion into SDIO's development environment.
Edwards includes a complex example that is good for showing how the guidelines
work together but makes initial understanding of the guidelines difficult. Finally,
the format of Edwards' document is not similar to that of other coding guidelines,

2. Personal communication with Axel Ahlberg of General Electric (GE), 1992. 0

2

0

making it much more diffiiult to use in conjunction with them.

* For a tutoria; .a related software reuse issues see Tracz [1988].

1.4 DOCUMENT ORGANIZATION

Section 2 presents the approach taken to develop the candidate list of
guidelines. Section 3 presents the guidelines which are already in the Ada Quality

*ai" ' Style document and thus will be used by SDIO, as well as guidelines which are
overlapped by other guidelines. Section 4 presents the guidelines which require
further study and the rationale for placing them in this category, Section 5 of this
document presents the candidate guidelines based on the 3C model. The docu-
ment closes with an acronym list and the appendices. Appendix A shows that
every guideline from Edwards was considered and the category to which each

- guideline was allocated. Appendix B includes source code examples.

Readers who are solely interested in the candidate guidelines should move
immediately to section 5 where they are presented.

3

2. APPROACH

In the process of analyzing Edwards' document to derive candidate guide-
lines, Edwards' document was first examined to find implied guidelines. This step
found two additional guidelines, "model use" and "procedure variable encapsula-
tion". The use of models was the basis of Edwards' paper but was never num-
bered as a specific guideline. Edwards' document also described mechanisms for
procedure variable encapsulation but did not identify it as a separate guideline,
and this appeared to be a promising guideline candidate.

This set of guidelines was then compared to Ada Quality and Style and to
each other. It was found that a number of guidelines were already in Ada Quality
and Style or subsumed by other guidelines, and these were removed from the can-
didate set.

This resulting list was then examined to see if any guidelines had outstand-
ing issues which required further study and would be inappropriate for a candidate
list. This examination included searching the literature, discussion with various
experts, and a few prototypes to test the validity of some individual guidelines.

The five remaining guidelines are listed as candidate reuse guidelines.
Since these guidelines were not in a form similar to Ada Quality and Style, these
guidelines were then reworded and reorganized to conform to that format. Each
guideline includes text which describes it and additional caveats where needed.

A list showing the set of Edwards' guidelines and how they were allocated
is shown in appendix A.

5

3. GUIDELINES OVERLAPPING EXISTING GUIDELINES

This section presents the guidelines which are not included in the candi-
date set of guidelines because they overlap guidelines in Ada Quality and Style or
other guidelines in Edwards [1990]. This section is included to show that the other
guidelines are not being ignored, but instead are either already being used by
SDIO or would be used if these candidate guidelines were used. Note that Ada
Quality and Style has a section specifically identifying reuse-specific guidelines,
and all of the overlapping guidelines are identified in this section.

Table 1 shows the guidelines from Edwards [1990] which overlap Ada
Quality and Style. The tbree columns show the guideline number, pages, and text
from Edwards [1990]. The final column shows the guideline number of an equiva-
lent guideline in Ada Quality and Style.

In addition, Edwards' "minimum profile" guideline (defined as guideline
10 in Edwards) subsumes Edwards' guidelines 6, 15 and 17, so the latter three are
also omitted.

There are differences between Ada Quality and Style and Edwards' docu-
ment. Edwards' guideline 5 recommends using limited private, while Ada Quality
and Style [p. 1381 (private and limited private types) recommends exporting lim-
ited private, private, or nonprivate as appropriate. Ada Quality and Style [p. 135]
requires both active and passive iterators but does not mention random-access
iterators. In contrast, Edwards [1990, p. 82] has a more complex requirement:
iterators are not actually required, but when included, active sequential access
iterators are to be preferred over passive iterators; and when active random-
access iterators are included they should be provided in addition to sequential
iterators.

7

TABLE 1. Guidelines Overlapping Existing Guidelines

Guide-
line SPC 0

No. Pages Guideline Text Location

1 29-31 A concept should be represented as a single, 8.3.2a,
generic package specification. 8.3.4

2 29-31 Each concept should provide one and only one 8.3.4
abstraction-i.e., define a single object type.

3 31-33 There should be no fixed, horizontal coupling 8.4.1a-c,
between a concept and other concepts. In other 8.3.2b
words, Ada packages that represent reusable
component concepts should not with other
packages.

4 35-42 Each abstraction should provide a complete set 8.3.1
of basic operations. The operations provided
should be sufficient for the reuser to construct
any complex manipulations that are needed 9
from them.

5 35-42 For the abstract types defined in a component, Related to
use limited private. 8.3.6b

8 35-42 All abstract types in the context (i.e. which are 8.3.6a
generic parameters in the package specifica-
tion) should be limited private. Similarly, Ini-
tialize and Finalize operations for such a type
should also be part of the generic formal param-
eter list.

11 42-45 Each implementation of a concept should exist 8.4.3
as a separate Ada generic package. However,
all the package specifications for these imple-
mentations should be identical except for the
package name and implementation context. 0

8

Guidelines Overlapping Existing Guidelines (Continued)

Guide-
line SPC
No. Pages Guideline Text Location

19 70-84 If there are explicit iterators, prefer active 8.3.5b-d
sequential over passive; protect from structural
modification; use explicit iterator state objects.

20 70-84 If there is an active random-access iterator, also 8.3.5b
provide active sequential access. When a ran- requires
dorm access iterator is included, it should use both
explicit state objects, support destructive itera-
tions, and ensure correct behavior under both
nested and concurrent operations.

9

4. GUIDELINES REQUIRING FURTHER STUDY

Table 2 shows the guidelines from Edwards [1990] that require significant
further study before they are included in a candidate set of guidelines.

TABLE 2. Guidelines Requiring Further Study

Guide-
line
Number Pages Guideline Text

13 45-53 Aliasing behavior (structural sharing) is the responsi-
bility of the abstraction, not the user.

14 45-53 Use Swap, not Copy, as the basic data movement oper-
ator.

16 45-53 Design constructors and selectors using Swap, not
Copy.

21 84-92 Use a standard interface for save and restore opera-
tions following the examples from Edwards [1990, pp.
90-91].

7,10 35-42 [Provide and use Initialize routines].

12 42-25 Common source should be located in a single location.
The Ada package specifications and bodies for multi-
ple implementations of a single concept should come
from a common source. Possible mechanisms for
doing so include the use of a preprocessor.

N/A 53-61 If procedure (or function) variables are needed, use a

I _concept which encapsulates their implementation.

4.1 SWAPPING

Edwaras' guidelines 13, 14, and 16 involve the use of swapping instead of
copying as the basic data movement operation (this is termed "swapping seman-
tics"). Strictly speaking, guideline 13 does not require swapping semantics, but
implementing guideline 13 without sF yapping adds a layer of complexity on reus-
able component implementations, as shown in Edwards [1990, pp. 46-49].

11

Using swapping wherever possible instead of copying has advantages for
reusable components, as described by Harms [1991] and Edwards [1990, pp.
49-51]. For example, with swapping it is easy to design unconstrained generic 0
components in which no restrictions are placed on the type of items contained
inside it. In addition, algorithms are potentially more efficient when copying is
avoided. When implemented as pointer swaps, swapping has the advantage of
constant performance no matter how complex the underlying data structure.
Finally, programs may be more reliable, since bugs resulting from visible aliasing 0
and dangling references would not occur. These are all argued further by Harms
[1991, p. 434].

There are concerns, however, which need to be addressed before including
these guidelines in a candidate set. Changing the basic data movement operator is
a major change from existing practice and there is no experience in its use in large 0
systems. Currently only smaller, basic objects (similar to those taught in introduc-
tory computer science courses) have been created using this approach. For an
example of these components, see Weide [1986]. This appears to be a major risk
in its application to large systems and suggests that its use in smaller systems
should be tried first before attempting to migrate to large systems. There is some 0
evidence (Weide [1986, p. 1]) that even well-known components are tricky to
design using this approach. This approach could make designing complex compo-
nents, which are difficult to design using conventional approaches, too difficult to
design in a reasonable amount of time.

There are a number of other concerns about swapping: 0

"* Swapping creates difficulties in exception handling. Exceptions are more
difficult to handle since a reusable component should always attempt to
bring the component back to some original state before passing the excep-
tion on. This is noted inAda Quality and Style by SPC [1991, p. 129]. 0

"* Swapping introduces an additional source of error, forgetting to swap an
extracted value back into its source, which is unnecessary using copy
semantics. Using copy semantics, iterators do not automatically modify
the structure they are iterating over and selectors provide read-only access
to structures. Using swapping semantics, iterators would use accessor 0
operations that would modify their internal structures. Selectors would
not exist, and would be replaced by accessor operations that would swap
the contents of the component. Code that originally simply examined a
small part of a component must have additional code to swap the data
back. Forgetting to swap the data back would be a new potential source of 0
error since this would not be needed using copy semantics.

"* Because swapping is a noatraditional method of data movement, there are
few examples, training materials, or experts who can provide the guidance
necessary to transition to this new approach. There is little data on its

12

limitations or the training necessary to use it effectively.

* * There is little evidence that swapping scales up. There are arguments (as
presented by Harms [1991] and Edwards [1990]) as to why swapping
scales up to larger components better than copying. There is a small
library of a few small components developed using swapping (as described
in Weide [1986]). Currently we are unaware of examples of swapping-
based components in anything larger than a few thousand lines of code.

* Swapping is not supported directly by Ada or other commonly used lan-
guages. This covers a number of concerns:

- Parameter passing in Ada is not by swapping. Ada's parameter
modes (which are in, out, and in out) do not correspond well to
the modes of parameter passing through swapping.

- Ada cannot detect when the same item is passed more than once in
a parameter list, which is acceptable when using copy semantics
but is an error when using swapping.

* - Existing components do not always provide swap operations.

- Constants are not easily handled and require additional instruc-
tions in Ada. For example, pushing an integer constant on a stack
would require a temporary variable in Ada when using swapping
for data movement:

temp :- 5; stack.push(temp);
In a swap-based language, these temporary variables could be
automatically generated by the compiler, but Ada does not provide
this automatic generation.

0 Swapping may require a much more complicated implementation than the
same component developed using copy-based semantics according to
Edwards [1990, p. 52].

Research and experimentation on swapping should continue because it
has the potential to make combining reusable components much easier than it is
today. Researchers in this area include Weide [1986] and Harms [1991].

4.2 SAVE AND RESTORE

Edwards' guideline 21 specifies an interface for save and restore behavior.
The idea of having a general, standard interface for save and restore behavior is a
good one. However, there are some concerns regarding this interface. First, this
interface is based on swapping, so the concerns above apply. Also, the interface
described achieves generality with great complexity in both interface and imple-
mentation.

13

4.3 INITIALIZE OPERATION

The final guideline in table 2 is actually a portion of two guidelines (7 and
10) describing initialization. Edwards recommends that every concept provide an
initialization procedure since some components may need such an operation. The
advantage of Edwards' approach is generality and consistency-all components
would have an initialization operation which others would use.

However, there are many disadvantages to requiring an initialization
operation on all components:

"* A separate initialization operation is often unnecessary. Ada provides a
default initialization mechanism that is sufficient for many types of reus-
able components. These mechanisms include access values, which are ini-
tialized to null, and default expressions. These simple mechanisms can be
used to implement more complex structures.

"* It is less safe. Depending on an explicit initialization operation adds a new
opportunity for errors by forgetting to call the initialization operation.
Also, these calls to the initialization operation would be separate from
component declarations, increasing the likelihood of omission.

"• It can make components harder to use. Instances of components would
require an initialization call before use.

"* It may have performance penalties. Performance is hindered if the initiali-
zation operation does nothing and the compiler does not optimize away the
call.

" In the future initialization will be better supported by compilers. The Ada
9X draft mapping includes the ability to define an initialization routine
which will automatically be called when variables are elaborated (as docu-
mented by Ada9X [1992, pp. 3-8]).

It can be easily argued that many of these points are also true for finalize,
but the first point notes a key difference: the Ada default initialization mechanism
can often be used to substitute for a separate initialization routine, but there is no
equivalent Ada mechanism for finalization.

Section 8.3.1 of Ada Quality and Style specifically discourages initializa-
tion operations on every component unless necessary, especially because of the
safety concerns. This remains unchanged in this candidate set of guidelines.

4.4 COMMON SOURCE

One guideline suggested by Edwards regards common source. Edwards
recommends that common source should be located in a single location. This
means that the Ada package specifications and bodies for multiple implementa-
tions of a single concept should come from a common source. Edwards notes that

1
14

0

possible mechanisms for doing so include the use of a preprocessor.

This guideline was removed from the originally proposed candidate set
because there was controversy in the value of this guideline among the reviewers.
Many reviewers believed that the condition where this guideline was useful was a
specialized case. This condition is that more than one implementation of a given
component would be used in the same application program. In the cases where
this condition did occur, an alternative to this guideline from Edwards is to con-
sider the components as two different (though related) components and not
attempt to create a common source for the different components. These separate
components would be relatively simple to manage, and comments could be
included to note that other implementations. In addition, some reviewers believed
that attempting to follow this common source guideline could make maintenance

0 more difficult, since the common source might not stay common during mainte-
nance.

The following text provides as additional information the rationale for
considering this guideline.

* Putting common source in a single location was believed to reduce mainte-
nance costs, since changes need only occur in one place. Failing to do Us could
result in multiple maintenance, 3 the problem of having to locate and change the
same code in more than one place. During the maintenance phase these copies
might not stay equivalent when they should, creating the potential to cause errors

0 that are difficult to trace.

There is a special case that occurs with developing reusable components,
however: multiple implementations of a single component may be used in a pro-
gram. A single component may have a number of different implementations.
These implementations might differ in a number of ways, such as being bounded or

* unbounded in memory use, their average performance, worst-case performance,
memory requirements, and accuracy.

If only one implementation will be used in a program, the implementation
can be chosen using the compilation environment (for example, by choosing to

0 compile only one of the implementations). In general, however, multiple imple-
mentations of a single component may be used in a program. Developers of reus-
able components must consider this possibility and, if relevant, make it possible to
use more than one implementation of a component in the same program.

Putting common source in a single location can be more difficult when
0 more than one implementation of a single component will be used in a program.

In particular, Ada currently allows only one body to exist for each package specifi-
cation. Even if multiple implementations are provided, only one can be linked into

3. Multiple maintenance is also called double maintenance, but this alternate term is misle'idinv,
0 since the number of overlaps can be much greater than two.

15

an executable. This is true even if the Ada specification is a generic, in which case
a single implementation must be chosen for all instantiations of that generic in a
single program. 0

A user could recompile a different body to change the implementation, but
this would restrict the user to a single implementation throughout the entire pro-
gram.

One general purpose solution to this restriction is evident: to achieve mul- 0
tiple implementations in Ada, create a separate package specification/body pair
for each implementation (each receiving a different package name). Changing
implementations can be accomplished simply by altering the package name in the
with clause (for examples, see Booch [1987, p. 55]).

A question then arises: how can common code (such as the specification 0
and perhaps parts of the bodies) still come from a common source? One of the
simplest solutions is the use of a preprocessor to generate the specification/body
pairs from a single source. For program bodies the common code segments could
be separated into generics which are used across several implementations (see
Musser [1989] for an example). 0

A reasonable aiternative might be to document in each component a cross-
reference to the other related components. For more xplanation and rationale
for this guideline, see Edwards [1990, pp. 42-45], guideline 12.

4.5 PROCEDURE VARIABLE ENCAPSULATION 0

One guideline derived from Edwards recommends that if procedure (or
function) variables are needed, a concept should be used which encapsulates their
implementation. This derived guideline was later removed from the candidate set.

Recommending encapsulation is reasonable, but Ada Quality and Style 0
already recommends information hiding as a general principle (section 4.1.4), and
thus this derived guideline is already covered by a more general principle. Also,
many reviewers of these candidate guidelines were concerned that specifically
identifying encapsulation of procedure variables might imply that using procedure
variables would automatically improve reusability. Many felt that the connection
to reuse was somewhat obscure, as procedure variables are simply one possible
mechanism for implementing approaches for improving reuse. It was decided that
these approaches to reuse, such as table-drive programming (described in Ada
Quality and Style, section 8.4.5), should be included in reuse guidelines instead of
detailed discussions of specific mechanisms such as procedure variables. •

Appendix B shows an example of a procedure variable concept that hides
how procedure variables are implemented. This is followed by two possible imple-
mentations, one using calls through the C programming language and one using
tasks. These are based on Edwards' work, but the code in the appendix does not
depend on swapping as Edwards' does.

16

~0

The implementation using the C programming language is not portable. In
particular, it is implementation dependent (on the Ada compiler, the compiler ver-
sion, and the platform) and context-dependent (it may work for some instantia-
tions of ARGTYPE but not others). For example, the Ada expression p'address
need not be identical to the C expression *p, the calling convention between C and
Ada compilers need not be identical, the alignment may be different between the
different compilers, and the pragma for calling to C might not be supported by a
particular Ada compiler. Note that the procedure call from C to Ada must have
matching compiler conventions. The advantage of the C implementation is that it
will normally be faster than the tasking-based implementation.

For procedures with an arity (number of parameters) greater than one,
there are two basic approaches. One is to pack and unpack data into the single
parameter. An alternative approach, but which can have implementation and
maintenance costs, is to modify the specification and implementation to handle
more than one passed parameter. The implementation shown has a limited private
ARGTYPE; an alternative would to pass a non-private type (a record with the
parameters).

17

5. CANDIDATE GUIDELINES

Table 3 shows the candidate guidelines for developing reusable Ada com-
ponents. This table has two columns. The "short name" column contains the title
of the guideline which is useful for referring to the guideline by name. The other
column is the text of the guideline.

TABLE 3. Summary of Candidate Guidelines

Short Name Guideline Text

Models Use a model to describe reusable components.

Minimum profile The minimum profile for a "concept" should be Copy,
Is-.Equal, Finalize, and Swap.

Finalize Consistently use the Finalize operations of reusable
components.

Self-composing As a test of the reusability of a component, consider
component composing the component with itself.
Arbitrary iterations Arbitrary iterations should be constructible from pri-

I mary operations.

Each guideline is described below. The guideline format is compatible
with the structure and format found in Ada Quality and Style. This includes fol-
lowing the structure of headings (for example, guideline and rationale) and text
formatting (for example, a bullet symbol precedes each guideline). This format is
followed to make it easier for the reader to use these guidelines in conjunction
with Ada Quality and Style as well as to facilitate the possible incorporation of
these guidelines into later versions of the SPC and GE documents.

Each section begins with the short name and text of the guideline. This is
followed by an example, rationale, and notes. There may also be a comments field
which discusses how this guideline relates to the existing SPC or GE documents;
this field would be omitted if the guideline were inserted into the GE or SPC
guidelines. There is no comments field in the SPC or GE documents. Empty sec-
tions are omitted (as they are in Ada Quality and Style).

19

5.1 MODELS

guideline

0 Use a model to describe reusable components.

rationale

Models are often used when working with complex objects. Using a
model provides the following: 0

- a terminology as an aid to communication (by establishing a common point
of reference).

- a framework for asking questions and for pointing out questions that
should be asked. 0

- a way to reduce complexity by separating out a small number of important
things to deal with at a time [Rumbaugh 1991].

There are a number of models, but no single model appears to be the best
for discussing all reuse issues. 0

In the Department of Defense (DoD) there is a precedent for recommend-
ing a model without specifying which one. DoD Instruction 5000.2 requires the
use of a process maturity model but does not specify a particular one.

example

This section describes a sample model termed the 3C model. The 3C
model is relatively simple and its mapping to Ada is mostly straightforward. How-
ever, this is not intended to restrict practitioners to this one particular model.

The 3C model was developed at the Reuse In Practice Workshop in 1989
and was documented by Tracz [1989]. The name of the 3C model comes from the 0
names of the three ideas on which it is based:

" The concept-what abstraction the component embodies. This includes
not only the syntax for using the abstraction, but also its semantics. For
example, a trivial concept might be a "stack" with the syntax and seman-
tics of all its operations (such as push and pop).

"* The content-how that abstraction is implemented. There may be more
than one implementation of a concept, so there may be more than one con-
tent for a concept.

"* The context-the software environment necessary to "complete" the com-
ponent (including parameters provided by the component user).

To create a reusable component using the 3C model, separate what the
component will do (the concept), how it will do it (the content), and what external
information is necessary to tailor the component for use (the context). •

20

There are two kinds of context in the 3C model-that of the concept (the
conceptual context) and that of the content (the implementation context). A par-
ticular implementation may need additional context that is not relevant to other
implementations of the same concept.

One simple mapping of the 3C model to Ada would implement the con-
cept as a generic package specification, different contents as different package
bodies for that specification, and the context as formal generic parameters of the
package specification. This is not the only possible mapping; the key is to separate
the three Cs and then use the appropriate Ada mechanisms to implement the com-
ponent, given its environmental and performance constraints.

The benefits of describing reusable components using the 3C model in an
* Ada development environment are as follows:

"* The 3C model separates the abstract ideas of concept, content, and con-
text from how they can be implemented using Ada constructs. This frees
developers from being constrained in their thinking to specific Ada con-
structs (such as generics).

0 9 The 3C model stresses that the developer must consider the environment
(context), make it visible, and separate it from both the concept and the
content.

"* The 3C model notes that there are contexts for both concept and content,
0 and that implementations may require additional parameters beyond those

needed, by the general concept.

The following are three possible misconceptions about reuse that a soft-
ware developer using Ada can avoid by using the 3C model.

* First, a developer may believe that Ada specifications by themselves define
a concept. Ada specifications only formally define the syntax, and to implement a
3C concept the semantics must also be defined. Thus, additional information must
be included with an Ada specification. These semantics might be specified infor-
mally using English. These semantics might also be specified formally using an
annotation language such as Anna (as described by Luckham [1985]) or a formal
specification language such as VDM (described by Jones [1986]) or Z (described
by Spivey [1988 and 1989]).

Second, developers using Ada might not consider that multiple implemen-
tations (contents) of a concept are possible. Ada does not permit multiple bodies

* for a single specification within a single program, so component developers must
work around this restriction when they wish to supply multiple implementations of
a concept which can be used simultaneously in a single program.

Third, developers might not consider the possibility of a tailorable context

for an implementation. Not only may concepts have a tailorable context, but

21

contents (implementations) may as well. A consideration is whether or not a par-
ticular implementation (content) has some additional pirameters that should be
accessible to the user.

For additional explanation and rationale of the 3C model and how it
applies (in general) to Ada, see Edwards [1990, pp. 3-16]. Additional information
on the 3C Model is given by Latour [1991a and 1991b] and Tracz (1989].

comments

Ada Quality and Style does not include any model or suggest that models
should be used.

0

22

5.2 MINLMUM PROFILE

0 guideline

* The minimum profile for a "concept" should be Copy, Is-Equal, Finalize,
and Swap.

example

* type Item is (limited] private;
procedure Copy(from : in Item; into : in out Item);
function Is_Equal(left, right : in Item) return boolean;
procedure Finalize(i : in out Item);
procedure Swap(left, right : in out Item);

*-- other operations.

rationale

A minimum profile helps make components more reusable because other
0 components can then assume that at least these operations are available. Other-

wise, if those operations are needed an alternative must be found.

Copy and Is-Equal are not automatically provided in Ada for limited pri-
vate types, but many other components may depend on these operations. Thus
thtse operationg should be provided where possible. Note that the Booch compo-
nents include these operations with the same semantics and operation names (as
shown in Booch [1987]).

A Finalize operation checks if any resources should be released, and if
they should, releases those resources. A Finalize operation could, for example,

* deallocate memory, close files or release semaphores. A Finalize operation should
be included, even if it does nothing in the current implementation, so that later
implementations can perform this operation and be assured that it will always be
called when appropriate.

The reviewers of Ada 9X have recognized that finalization is an important
0 operation. The capability to define a finalization operation (which is automatically

called when a variable leaves its scope) is in the draft mapping of Ada 9X [1992,
pp. 3-8]. For additional information, see the "finalize" guideline which specifies
that this operation should be used.

Including the Swap operation in a minimal profile may seem unusual, but
there are two reasons for including it in the minimum profile. First, a number of
algorithms (such as sorting) depend on swapping and are far less efficient if they
must simulate swapping using copying. Second, including a Swap operation
makes it possible for other components to be built in the future using a different
approach for data movement. There are good arguments that for reusable

23

components swapping is a better basic operator for moving data than copying, as
described by Harms [1991] and Edwards [1990]. Including a swap operation
makes it easy to use these components with either approach to moving data (i.e.,
copying or swapping).

It should be noted that the names of these operations are not as critical as
the existence of the operations themselves. Ada's rename facility can be used to
provide other names. Also, when used as parameters in generic instantiations, the
operation names must be listed in any case.

This guideline should not be interpreted as requiring the use of limited pri-
vate types. For more information on this limited private types, see Ada Quality
and Style section 8.3.6 (private and limited private types). Ada limited private
types provide complete control over a type, but can increase development time
and decrease run-time performance. For example, Ada's predefined assignment,
equality tests, and array indexing operations (with their convenient syntax and
often efficient implementations) are not available for limited private types. A con-
scientious designer must carefully trade off the benefits of increased generality ver-
sus the cost of actually reusing the component, since in some cases a more general
component may be harder to use.

For additional explanation and rationale of this guideline, see Edwards
[1990, pp. 35-42] on guideline 10.

comments

Section 8.3.1 of Ada Quality and Style requires complete functionality and
mentions Finalize, but neither mentions Swap nor gives such clear direction on a
minimum profile.

0

24

0

5.3 FINALIZE

- guideline

* Consistently use the Finalize operations of reusable components.

rationale

Finalization is an operation that returns dynamically allocated resources
* associated with a component. A Finalization operation may, for example, return

dynamically allocated memory, close files, close (user interface) windows, or com-
mit transactions that are associated with a component upon its deallocation. Data
structures that require only static storage and do not allocate additional resources
do not require finalization, and stack-based structures which do not allocate addi-

* tional resources are finalized automatically. Among the collection of components
used in a program, therefore, some may require explicit finalization while others
may not.

Without finalization, a reused component that allocates dynamic storage,
opens files or windows, etc., could cause a program to run out of resources,
potentially halting its execution. The probability of problems occurring due to
unreclaimed resources may be difficult to predict, as they depend on factors such
as the usage pattern of the application and the resources available. Assuming that
resources will be returned automatically can make reusable components consider-
ably less reliable.

Finalization has a rather severe "ripple effect". Any data structure that
incorporates a component that requires finalization will inherit the need for finali-
zation, even though the new data structure would not otherwise require it. The
new finalization operation may do nothing more than invoke its components' finali-
zation operations; however, it is essential to propagate this service.

The irregularity between components that do and do not require explicit
finalization and the ripple effect create a dilemma over when and where to provide
finalization. The solution recommended by these guidelines is to ensure that all
components have Finalize operations which are always invoked when the compo-

* nent leaves its scope. This improves the consistency of components and increases
the possibility of composing larger components from smaller enes. The Finalize
operation gives the component developer the opportunity to return resources
without requiring the component user to know what those resources are.

When using Ada (as defined by ANSI [1983]), unfortunately, the user
* must always remember to invoke the Finalize operation explicitly when the compo-

nent leaves its scope. Planned Ada 9X [1992, pp. 3-8] language revisions include
a mechanism by which user-defined finalization operations will be invoked auto-
matically, thus removing this responsibility.

25

Another possible solution to the dilemma is to provide two versions of a
component, one with and one without finalization, and require the user to ensure
that the version with finalization is used where appropriate. Components that do 0
not invoke the finalization operations of incorporated components should be
clearly documented as not providing this service.

Finalization complicates the development and use of components, thus
increasing the cost of reuse. For some compilers, finalization may introduce extra
run-time overhead in the case where (1) no explicit finalization is needed and (2) 0
the compiler does not optimize away procedure calls that simply return. Thus,
there are several trade-offs to be considered.

The Finalize operation is further described under the "Minimum Profile"
guideline. The minimum profile guideline requires a component developer to pro-
vide a Finalize operation, while this guideline requires that Finalize always be
used.

For additional explanation and rationale of this guideline, see Edwards
[1990, pp. 35-42] on guideline 7.

comments

This guideline might be implied from Ada Quality and Style, section 8.3.1
(complete functionality), but is not clearly stated.

26

0

5.4 SELF-COMPOSING COMPONENT

0

guideline

* As a test of the reusability of a component, consider composing the com-
ponent with itself.

rationale

For a component to work in various contexts, its parameters and exported
operations must be robust. Thus, it is important to have ways of testing this
robustness.

One test of robustness is to consider composing a component with itself.
Many components depend on other components as parameters (for example).
Self-composing a component means that the component is used as its own parame-
ter. Attempting to do this simultaneously tests how well the component can (1)

• use other components and (2) be used by other components. For a number of
components this capability is itself important, for this makes it possible to use
these components as "building blocks" to be combined in different ways to imple-
ment more complicated components.

As a simple example, consider a "stack" component. You should be able
* to simply create a "stack of stacks". If you implement this stack as a generic

abstract data type (ADT),4 you should be able to take the exported type and
operations from one instantiation and use them to instantiate a second stack pack-
age.

It is important to note that a component might not ever be used when com-
* posed with itself. This guideline is simply a test of reusability to help the developer

check for missing parameters or operations. This test is likely to be appropriate
for small container components which are intended to be combined with similar
kinds of components. For some components this test may be inappropriate.

* For additional information about this guideline, see Edwards [1990, pp.
35-42] on guideline 9.

notes

Implementing a self-composed component may reveal problems that might
otherwise be missed. However, even considering the issue may help identify prob-
lems.

4. As defined in Ada Quolity and Style section 8.3.4, "Using Generic Units for Abstract Data
STypes".

27

5.5 ARBITRARY ITERATIONS

guideline 0

e Arbitrary iterations should be constructible from primary operations.

rationale

A component can be used in more applications if arbitrary iterations can
be constructed from the operations provided. If this cannot be done, new itera- 0
tions may require modification of the component itself. Each modification would
then require time to design, code, and test, whereas a more general iteration capa-
bility would eliminate this need entirely. This guideline only applies to components
where iteration is appropriate.

For additional information on this guideline, see Edwards [1990, pp. 0
70-82] on guideline 18.

comments

Ada Quality and Style's sections 8.3.5 (which describes iterators) and
8.3.1 (which requires complete functionality) might imply this when combined, but 0
neither explicitly state this. Section 8.3.5 requires active iterators but does not
state that arbitrary iterations should be constructible from the existing operations.

0

28

APPENDIX A

GUIDELINE ALLOCATION

Every guideline from Edwards' document has been considered. The following
table shows where each guideline has been allocated in this document. The first

* column shows its guideline number in Edwards' document. The second column
includes a short descriptive name of the guideline; no such names were given in
Edwards, so these names have been created for the purpose of this document.
Each of the guidelines is allocated to one of the following categories: SPC (it
overlaps with a guideline in Ada Quality and Style), Edwards (it is subsumed by
another guideline in Edwards), Study (it requires further study), or Candidate (it
has been included in the candidate list of guidelines).

This list shows 25 guidelines. Edwards only number 21 guidelines, but two
additional guidelines were implied (with guideline numbers "N/A") and two oth-
ers (guidelines 7 and 10) have been split to allocate them to different categories,

* bringing the total to 25.

0

29

TABLE 4. Allocation of Edwards' Guidelines

Guide-
line 0
No. Short Name SPC Edwards Study Candidate
1 Single Specification ,

2 Only One Abstraction 0
3 Horizontal Coupling 0
4 Complete Operation Set 0
5 Limited Private 0

6 Initialize and Finalize 0
7a Initialize 0
7b Finalize
8 Context types 0
9 Self-Composing Component 0

10a Minimum Profile: Initialize •
10b Minimum Profile
11 Separate Package Imple- 0

mentations
12 Common Source
13 Structural Sharing 0

14 Using Swap •
15 Define Swap 0 0
16 Constructors and Selectors •

with Swap
17 Copy and Is._Equal 0
18 Arbitrary Iterations S

19 Iteration Types 0 •
20 Random Access Iterator 0

21 Save/Restore
N/A Models
N/A Procedure Variable Encap- S

sulation •

30

APPENDIX B

PROCEDURE VARIABLE EXAMPLE

This appendix presents a procedure variable concept that hides the imple-
mentation of procedure variables. It is intended as an example of a procedure
variable component. This is followed by two possible implementations, one using
tasks (for portability) and one using calls through C.

1. PROCEDURE VARIABLE SPECIFICATION
-- Procedure variable concept

-- This defines a procedure variable type (PROCEDUREVARIABLE).
-- Variables of type PROCEDURE-VARIABLE may be set to the value
-- of a procedure, and the variable may later be used to call whatever
-- procedure the variable was last set to.
-- When called the procedure will be passed a variable of type ARGTYPE.

-- This component is based on the one in the paper
"-- 'An Approach For Constructing Reusable Software Components in Ada''
-- by Stephen Edwards. IDA Paper P-2378, Sept. 1990.
-- Alexandria, VA: Institute for Defense Analyses (IDA).
-- Unlike the component in Edwards' paper this component does not depend
-- on swapping.

generic
-- ARG_TYPE is the type which will be passed to the procedure variable.
type ARGTYPE is limited private;
with procedure Initialize(Data in out ARGTYPE)i
with procedure Finalize (Data : in out ARGTYPE);

package ProcedureVariableAbstraction is
type PROCEDURE-VARIABLE is limited private;

procedure Initialize(Data : in out PROCEDUREVARIABLE);
-- This initializes a procedure variable to the conceptual
-- value 'NULL."
-- This must be executed for each PROCEDUREVARIABLE declared.

procedure Finalize (Data : in out PROCEDUREVARIABLE);
-- This releases all resources associated with PROCEDUREVARIABLE.
-- It must be executed on each PROCEDUREVARIABLE before that variable

31

-- goes out of its defining scope.

procedure Swap(left : in out PROCEDUREVARIABLE;
right : in out PROCEDUREVARIABLE);

function ProcedureVariableIsNull(PV in PROCEDUREVARIABLE)
return BOOLEAN;

procedure ResetProcedureVariable(PV : in out PROCEDUREVARIABLE);

generic
with procedure P(a: in out ARGTYPE);

package ProcedureDefiner is
procedure SetProcedureVariableToP(PV: in out PROCEDUREVARIABLE);

end ProcedureDefiner;

procedure Invoke_Procedure(PV : in PROCEDUREVARIABLE;
Arguments : in out ARGTYPE);

UNINITIALIZEDPV : exception;

private
type PVBLOCK;
type PROCEDUREVARIABLE is access PVBLOCK;

end ProcedureVariableAbstraction;

32

2. PROCEDURE VARIABLE IMPLEMENTATION USING TASKING

-- @(#)procvar.bl.a 1.2 9/6/90

with uncheckeddeallocation;
package body ProcedureVariableAbstraction is

task type go between type is
entry in-args (a in out argtype);
entry out args (a2 in out argtype);
entry return args(a3 in out argtype);

end go_between-type;

type procedure-type is access gobetween type;
nullprocedure : procedure-type :- null;
type pvblock is record

pv : procedure type :- nullyprocedure;
end record;

procedure initialize(data : in out procedurevariable) is
begin

if data /- null then
finalize(data);

end if;
data :- new pv block'(PV -> nullprocedure);

end initialize;

procedure finalize(data : in out procedurevariable) is
procedure free is new uncheckeddeallocation(

pvblock, procedure variable);
begin

if data /- null then
free(data); -- assigns data - null after deallocating space

else
raise UNINITIALIZED PV;

end if;
end finalize;

procedure swap(left : in out procedurevariable;
right : in out procedure variable) is

temp : procedurevariable :- left;
begin

-- The normal "swap" implementation. Note that it runs
-- in "constant" time, regardless of the size of a

33

-- PV_BLOCK, so the representation of a procedure variable
-- can be altered without affecting its efficiency.
left right;
right temp;

end swap;

function procedurevariable is null(pv in procedurevariable)
return boolean is

begin
if pv = null then

raise UNINITIALIZEDPV;
else

return pv.pv = nullprocedure;
end if;

end procedure variable is null;

procedure resetprocedurevariable(pv in out procedure-variable) is
begin

if pv = null then
raise UNINITIALIZEDPV;

else
pv.pv := nullprocedure;

end if;
end resetprocedurevariable;

package body ProcedureDefiner is

task shell is
entry receive-go-between(gbholder : in procedure-type);

end shell;

go-between : procedure-type :- new gobetween type;

procedure set~procedurevariabletoP(pv : in out procedurevariable) is
begin

if pv - null then
raise UNINITIALIZEDPV;

end if;
pv.pv :- gobetween;

end set.procedurevariable-toP;

task body shell is
gb proceduretype;
a argtype;

begin
initialize(a); -- set it to a valid initial value
accept receive go_between(gbbolder : in procedure-type) do

gb:- gbjholder;
end receivegobetween;
loop

3

34!

0

-- swap the requested argument value into A
gb.out args(a);
-- invoke the actual procedure
p(a);

-- swap the (possibly altered) value back to the caller
gb.returnargs(a);

end loop;
-- This point is unreachable, zut for completeness,
-- clean up when done
finalize(a);

end shell;

begin
shell.receivegobetween(gobetween);

end ProcedureDefiner;

procedure invokeprocedure(pv : in procedurevariable;
a : in out argtype) is

begin
if pv = null then

raise UNINITIALIZEDPV;
elsif pv.pv /= nullprocedure then

pv.pv.in-args(a);
end if;

end invokeprocedure;

task body go between type is
begin

loop
accept in-args(a : in out argtype) do

-- accept inpuf to procedure P
accept out args(a2 : in out arg type) do

-- put P's arg into a2 so SHELL task can see it
swap(a2, a);

end outargs;
accept returnargs(a3 : in out argtype) do

-- take output from SHELL task and put it back
-- in A to be passed back to INVOKEPROCEDURE.
swap(a, a3);

end return args;
end in args;

end loop;
end go_betweentype;

end ProcedureVariableAbstraction;

35

3. PROCEDURE VARIABLE IMPLEMENTATION USING INTER-
LANGUAGE CALL

-- proc var.b2.a

with System, UncheckedConversion, UncheckedDeallocation;
package body ProcedureVariableAbstraction is

type arg_type_ptr is access argtype;
subtype proceduretype is system.address;
nullproc : integer :- 0;
nullprocedure : constant proceduretype :- nullproc'address;
type pv_block is record

pv : procedure-type := null procedure;
end record;

procedure initialize(data : in out procedurevariable) is
begin

if data /= null then
finalize(data);

end if;
data :- new pvblock'(PV -> nullprocedure);

end initialize;

procedure finalize(data : in out procedure variable) is
procedure free is new unchecked deallocation(

pvblock, procedurevariable);
begin

if data /- null then
free(data); -- assigns data - null after deallocating space

else
raise UNINITIALIZEDPV;

end if;
end finalize;

procedure swap(left : in out procedure variable;
right ; in out procedure-variable) is

temp : procedure-variable :- left;
begin

-- The normal "swap" implementation. Note that it runs
-- in "constant" time, regardless of the size of a
-- PVBLOCK, so the representation of a procedure variable
-- can be altered without affecting its efficiency.
left :- right;

37

right := temp;
end swap;

function procedurevariable is null(pv in procedure_variable)
return boolean is
use system;

begin
if pv = null then

raise UNINITIALIZEDPV;
else

return pv.pv = nullyprocedure;
end if;

end procedurevariable is null;

procedure resetprocedurevariable(pv in out procedurevariable) is
begin

if pv = null then
raise UNINITIALIZEDPV;

else
pv.pv := nullprocedure;

end if;
end reset_procedurevariable;

package body ProcedureDefiner is

procedure pwrapper(aa : in system.address) is
function fromsa is new uncheckedconversion(

system.address, argtypeptr);
a : argtype_ptr := fromsa(aa);

begin
p(a.all);

end pyrapper;

procedure set_procedurevariabletoP(pv in out procedurevariable) is
begin

if pv = null then
raise UNINITIALIZEDPV;

end if;
pv.pv :- p wrapper'address;

end setprocedurevariabletoP;

end ProcedureDefiner;

procedure invoke procedure(pv : in procedurevariable;
arguments : in out argtype) is

procedure cinvokehook(a : in system.address;
p : in system.address);

pragma interface(c, cinvokehook);
use system;

begin

38

if pv = null then
raise UI'INITIALIZEDPV;

* elsif pv.pv /= nullyprocedure then
c-invoke hook(arguments'adrs, pv. pv);

end if;
end invoke~procedure;

end ProcedureVariableAbstraction;

/* C function to invoke procedure "'procedure -variable'' with ''arguments''"
void c-invoke-hook(arguments, procedure-variable)
int *arguments;
void (*procedure-variable)();

(*procedure variable)(Carguments);

I3

REFERENCES

[Ada9X 1992] Office of the Under Secretary of Defense for Acquisition.
Ada 9X Mapping Document Volume 1: Mapping Ratio-
nale. March 1992. Cambridge, MA: Intermetrics, Inc.

[AdaIC 1991a] Ada Information Clearinghouse (AdaIC) Newsletter. Sep-
tember 1991. Vol IX, No. 3. Lanham, MD: IIT Research

*0 Institute.

[AdaIC 1991b] Ada Information Clearinghouse (AdaiC) Newsletter.
December 1991. Vol IX, No. 4. Lanham, MD: IIT
Research Institute.

[Ahlberg 1992] Ahlberg, Axel. 1992. Personal Communication.

[ANSI 1983] ANSI/MIL-STD-1815A-1983. 1983. Reference Manual
for the Ada Programming Language.

[Baldo 1990] Baldo, James. April 1990. Reuse In Practice Workshop
Summary. IDA Document D-754. Alexandria, VA: Insti-
tute for Defense Analyses.

[Booch 1987] Booch, Grady. 1987. Software Components with Ada, Sec-
ond Edition. Menlo Park, CA: BenjaminlCummings.

[Edwards 1990] Edwards, Stephen. 1990. An Approach for Constructing
Reusable Components in Ada. IDA Paper P-2378. Alex-
andria, VA: Institute for Defense Analyses.

[Edwards 1992] Edwards, Stephen. 1992. Personal Communication.

[GE 1991] General Electric Aerospace. August 19, 1991. GPALS
Software Standards. CDRL A095. Blue Bell, PA: General
Electric Aerospace.

[Harms 1991] Harms, Douglas E. and Bruce W. Weide. 1991. "Copying
and Swapping: Influences on the Design of Reusable Soft-
ware Components." IEEE Transactions on Software Engi-
neering. May 1991. Vol 17, No. 5, pp. 424-435.

[Jones 19861 Jones, C.B. 1986. Systematic Software Development
Using VDM. Prentice-Hall International.

41

[Latour 1991a] Latour, Larry, Torn Wheeler, and Bill Frakes. 1991.
"Descriptive and Predictive Aspects of the 3Cs Model:
SETA1 Working Group Summary" Ada Letters, Spring
1991, pp. 9-17.

[Latour 1991b] Latour, Larry. 1991. "A Methodology for the Design of
Reuse Engineered Ada Components". Ada Letters,
Spring 1991, pp. 103-113.

[Luckham 1985] Luckharn, D. and F.W. von Henke. March 1985. "An
Overview of Anna, A Specification Language for Ada".
IEEE Software: 9-22.

[Musser 1989] Musser, David R. and Alexander A. Stepanov. 1989. The
Ada Generic Library: Linear List Processing Packages.
New York, NY: Springer-Verlag.

[Rumbaugh 1991] Rumbaugh, James et al. 1991. Object-Oriented Modeling
and Design. Englewood Cliffs, NJ: Prentice-Hall.

[SDIO 19921 Strategic Defense Initiative Organization. March 1992.
SDIO Software Policy. SDIO Directive No. 3405 (Revi-
sion 1).

[SPC 1989] Software Productivity Consortium (SPC). 1989. Ada
Quality and Style: Guidelines for Professional Program-
mers. ISBN 0-442-23805-3. New York, NY: Van Nostrand
Reinhold.

[SPC 1991] Software Productivity Consortium (SPC). 1991. Ada
Quality and Style: Guidelines for Professional Program-
mers. Version 02.00.02, SPC-91061-N. Alexandria, VA:
Defense Technical Information Center (DTIC).

[Spivey 1988] Spivey, J. M. 1988. Understanding Z-A Specification
Language and Its Formal Semantics. Cambridge Tracts in
Computer Science 3. Cambridge University Press, 1988.

[Spivey 1989] Spivey, J. M. 1989. The Z Notation: A Referen - Manual.
Prentice-Hall International.

[Tracz 1988] Tracz, Will J. 1988. Tutorial: Software Reuse: Emerging
Technology. Washington, DC: IEEE Computer Society
Press. IEEE Catalog Number EH0278-2. ISBN
0-8186-0846-3.

[Tracz 1989] Tracz, W.J. 1989. "Implementation Working Group
Report." Reuse In Practice Workshop Summary. James
Baldo. IDA Document D-754. Alexandria, VA: Institute

42

for Defense Analyses.

[Weide 1986] Weide, Bruce. January 1986. A Catalog of OWL Concep-
tual Modules. Columbus, Ohio: The Ohio State University.

40

0

0

0

43

ACRONYMS

3C Concept, Content, and Context
ACM Association for Computing Machinery
ADT Abstract Data Type
AJPO Ada Joint Program Office
DoD Department of Defense
GE General Electric
GPALS Global Protection Against Limited Strikes
IDA Institute for Defense Analyses
SDIO Strategic Defense Initiative Organization
SEI Software Engineering Institute
SPC Software Productivity Consortium

45

